

Network architecture for Proton Decay Analyses in Liquid Argon Time Projection Chambers

KEVIN WIERMAN

PNNL

FNAL ML

Proudly Operated by Battelle Since 1965

Proton Decay in LArTPCs

arXiv:1512.06148v2

1. Given a proposed process

Decay Mode	Water Cherenkov		Liquid Argon TPC	
	Efficiency	Background	Efficiency	Background
$p o K^+\overline{ u}$	19%	4	97%	1
$p o K^0\mu^+$	10%	8	47%	< 2
$p o K^+\mu^-\pi^+$			97%	1
$n o K^+ e^-$	10%	3	96%	< 2
$n o e^+\pi^-$	19%	2	44%	8.0

Numbers are based on studies done by A. Bueno et al. JHEP 04 (2007) 041

3. Get a measurement of n events

5. Goal is this limit

2. Simulate the background

4. Apply same cuts to data

Current issues with PDK

	LineCluster		Identified as Particle				
True Particle		μ	π	K	р		
	K	3.8%	5.0%	44.8%	3.7%		
	μ	77.9%	12.3%	0.4%	0.0%		
	е	75.2%	1.1%	0.4%	0.0%		
	TrajCluster	Identified as Particle					
Irue Particle		μ	π	K	р		
	K	4.5%	4.2%	47.9%	7.6%		
	μ	73.1%	11.7%	0.4%	0.1%		
	е	82.5%	0.8%	0.2%	0.1%		

Tingjun Yang, Dune Collaboration Meeting, January 2017

Proudly Operated by Battelle Since 1965

PIDA With CNN

- Utilize CNNs to Identify PDK events in data
 - $p \rightarrow K^+ \bar{\nu}$
 - $p \rightarrow \pi^+ \bar{\nu}$
 - $p \rightarrow e^+ \pi^0$
- Simulate these events and potential background processes

Backgrounds

- DUNE
 - Atmospheric Neutrinos

- MicroBooNE
 - Cosmics

Image courtesy of Elena Gramellini.

Challenges in LArTPCs Part 1: Data Preparation

Proudly Operated by Battelle Since 1965

- Need:
 - When feeding network
 - Tensor-like data
- Naïve approach:
 - R=U plane
 - G=V plane
 - B=Y/W/Z plane
 - Indices:
 - [filter,event,plane,wire,time]

2. This fraction of the image does Not show up in (u,v)

3. Size: Even for moderately sized TPCs, this is LARGE

Challenges in LArTPCs Part 2: Categorization

- AKA forming the question
- Using MCParticle, the first order approach is:

For a label vector: [0,1,3,0,6,0]

With corresponding indices: $[e^-, e^+, \mu^-, \mu^+, K^+, K^-]$

This means: There are:

1 Positron

3 Muons

6 Kaons (+)

Following scheme developed by uBooNE collabroation See Arxiv: https://arxiv.org/abs/1611.05531

Solution: Ask a better question

Proudly Operated by Battelle Since 1965

- The base question is:
 - Do we have a valid proton decay event?
 - First pass qualifications:
 - Are the final states correct?
 - Are the summed energies below mass shell?
- Now for second order qualification:
 - Need 3D tomography for summing total momenta to 0
 - For multi-particle final states
 - Need semantic segmentation for identifying which pixels to sum over

Solution: Forming an Architecture from the data

Proudly Operated by Baffelle Since 1965

- Separate Network into 2 parts:
 - 1. Intra-planar network
 - Should work uniformly on each layer, but not between layers
 - 2. Inter-planar network
 - Convolve on the planar axis

Creating a new CNN Architecture for LArTPCs

Proudly Operated by Battelle Since 1965

Underlying Toolset

Proudly Operated by Battelle Since 1965

Training Scheme

- Goal:
 - Create a common training framework for both uBooNE and DUNE
- In data production:
 - Create a LArSoft Dependent framework for generating MC samples
 - The Maze
 - https://github.com/kwierman/themaze
 - Does not depend on DUNE/uBooNE IP
 - Can create common samples for pretraining networks
- In training framework:
 - Create geometry-independent framework
 - Able to accept both uBooNE and DUNE geometry (currently single APA)

Pacific Northwest NATIONAL LABORATORY Proudly Operated by Battelle Since 1965

Current Status

For uBooNE:

- 1. Prepare MC data sets
 - Proton decay with new genie generator
 - 2. Cosmics with Corsika
 - 3. PDK with Corsika overlay
- Convert data to HDF5
 - 1. Create categorization
- 3. Define model and data gen patterns
- 4. Pretrain network on singles
- 5. Train
 - 1. PDK (no cosmics)
 - 2. Cosmics (no pdk)
 - 3. Cosmics and PDK

For DUNE

- 1. Prepare MC data sets
 - Proton decay with new genie generator
 - 1. Geometry: 1x2x6
 - 2. Atmospheric neutrinos
- Convert data to HDF5
 - 1. No recob::wires yet

Work with Data Science and Analytics (DSA)

Proudly Operated by Baffelle Since 1965

- Also working with DSA at PNNL
 - Access to several DGX-1's
 - Multi-GPU analysis
 - Necessary for full-sized images
 - Investigating a few other approaches
 - Sim-GAN
 - Wavelet decomposition
 - Developing Deep Learning techniques for multiple experiments
 - PNNL aims to be lead lab in DOE complex developing DL for mission science

DGX-1 Image courtesy of NVidia

DAQ

- PNNL developing scheme to identify events of interest
 - Using CNNs on FPGAs
 - For potential use as off beam-spill triggering
 - Have established an industry partner for developing this technology

Questions?

Time

Data Preparation

Proudly Operated by Battelle Since 1965

For uBooNE:

- RGB maps to UVY
- Use computer vision

For DUNE:

- Really have to rethink how we deal with wrapped wires and collection plane
- The tensor operations don't change, but the tensor shapes do

Wire Number